Exploring the Effects of Code Optimizations on
CPU Frequency Margins

Konstantinos Parasyris, Nikolaos Bellas, Christos D. Antonopoulos, and
Spyros Lalis

University of Thessaly
Glavani 37, 38221 Volos
{koparasy, nbellas, cda, lalis}@uth.gr

Abstract. Chip manufactures introduce redundancy at various levels
of CPU design to guarantee correct operation even for worst-case com-
binations of non-idealities in process variation and system operation
conditions. This redundancyis implemented partly in the form of volt-
age/frequency margins. However, for a wide range of real-world execu-
tion scwienarios, these margins are excessive and translate to increased
power and energy consumption. Among the various factors that affect
the degree to which these margins are actually needed to avoid errors
during program execution, the impact of compiler and source code opti-
mizations has not been explored yet. In this work, we study the effect of
such optimizations on the frequency margins and the energy efficiency
of applications in the ARM Cortex-A53 processor.

Keywords: energy efficiency - compiler optimizations - frequency mar-
gins

1 Introduction

As predicted by Moore’s Law, the scalability of semiconductor manufacturing
process has been the driving force behind the increase in the capabilities of
computer systems. However, scaling into lower nanometer geometries has led to
variability of transistor characteristics, resulting into increased failure rates in
modern CPUs. Conventional techniques for providing reliable execution include
extra provisioning in logic and memory circuits in the form of increased voltage
margins and reduced operating frequencies (so-called guardbands), as well as
special error correction circuitry. But all these techniques consume more power,
thus are not very attractive in light of the ambitious goal to reach exascale
performance with constrained power budgets [4]. More specifically, guardbanding
may increase power dissipation in the order of 35% [6]. Yet most of the time these
guardbands are excessive and translate to unnecessary overhead, as the worst-
case combinations that were considered at design time may appear only rarely
or even not at all during the life cycle of a given CPU part.

Many factors affect the CPU margins during application execution, including
the application’s characteristics, the libraries used by it, the CPU microarchitec-
ture and the environmental conditions (e.g., temperature) [10,9]. Among these

2 Parasyris K. et al.

factors, compiler and source code optimizations have not been investigated so
far. It is important to analyze the impact of such optimizations though, given
that these are common practice when trying to improve application performance.

The contributions of this work are the following: (i) we study the effect
of common compiler optimizations on the energy efficiency and the frequency
margins of four ARM Cortex-A53 processor parts; (ii) we examine the effect of
memory access pattern optimizations on the energy efficiency and the frequency
margins; (iii) we inspect the interaction of SIMD instructions on the energy
efficiency and the frequency margins.

We perform bare metal executions to isolate the effect of the optimizations
from the system software stack (OS). Our results show that the ARM Cortex
A-53 has on average frequency margins equal to 14% of the nominal frequency.
The maximum energy gain due to these frequency margins is 12%. Regarding the
effect of compiler optimizations, the least optimized versions of the application
typically exhibit wider margins. On the other hand, source code optimizations
can increase the frequency margins, up to 4% of the nominal frequency.

The remainder of this paper is organized as follows. Section 2 presents the
hardware setup and our methodology. Section 3 shows our experimental results
when studying the effect of compiler optimizations. Section 4 presents the effect
of source code optimizations. Section 5 presents the related work. Section 6
concludes our study.

2 Methodology

We perform our experiments on four raspberry PI 3b platforms. Each PI has a
4 core ARM Cortex A-53 in-order processor running at a nomimal frequency of
1200M hz, with a nominal supply voltage of 1.2V. Cores feature a 64KB L1 data
cache and a 64KB L1 instruction cache, a 512KB L2 Cache and 1GB LPDDR2
RAM (900Mhz). The power consumption of the entire platform is measured
using an external data acquisition USB device [8]. To accurately capture the
behavior of the different applications and optimizations without the interference
of the system software stack (which can introduce significant non-determinism),
we use a bare metal environment, called Circle [11].

To quantify the frequency margins of each CPU part, we identify the max-
imum frequency that can be reached while still achieving correct execution
(fimaz). This is done, for each application benchmark, using a binary search
algorithm, which determines f,,q, within a range [low, high]. Initially, we set
low = 1200M hz and high = 1500M hz, and set f,,q: equal to the middle of the
interval (1350M hz). Noticeably, although we increase the frequency, we do not
increase the supply voltage. During the execution of the application, we detect
any hardware traps raised (e.g., due to the execution of an illegal instruction)
and infinite loops (if the execution takes much longer than the time required
to run the application at the nominal frequency). If the application runs suc-
cessfully, the produced output is compared against the correct golden output in
order to detect any Silent Data Corruptions (SDCs).

Exploring the Effects of Code Optimizations on CPU Frequency Margins 3

To account for any non-deterministic behavior during execution, we run the
application 1024 times for each tested frequency, which provides a confidence
level of 99% and an error margin of 2%. If all runs complete successfully, the
region [low, fimaz] is marked as safe, the low bound is increased to low = frax,
and fpqz is adjusted accordingly (to the middle of the interval). Else, if erroneous
behavior is detected, we mark the region [fmaz, high] as unsafe, and the high
bound is decreased to high = fj4.. The algorithm terminates when the interval
width becomes less than 5mV . No human intervention is needed, since we reboot
after a CPU Crash using an external hardware watchdog.

3 Compiler Optimizations Analysis

In this work we use the gcc 4.9.8 compiler. While modern compilers provide
users with specific options to optimize their code, individual optimizations are
usually grouped in higher-level options, such as 00, O1, 02, O3, Os. Our study
only considers these options.

We use several applications/kernels taken from various benchmark suites [?,5,
12]. In this study, we analyze Sobel, DCT, Inversek2j, Blackscholes, Swaptions,
Fluidanimate, Sjeng and Libquantum. Sobel is a 2D filter for edge detection in
images. Discrete Cosine transform (DCT) is a module of the JPEG compression
and decompression algorithm. Inversek2j is a robotics benchmarks that calcu-
lates the angles of a 2-joint arm using the kinematic equation. Blackshcoles im-
plements a mathematical model for a market of derivatives, which calculates the
buying and selling of assets to as to reduce the financial risk. Fluidanimate ap-
plies the smoothed particle hydrodynamics method to compute the movement of
fluid in consecutive time steps. Swaptions uses the Heath-Jarow-Morton frame-
work to price a portofolio of swaptions. Sjeng is a chess-player application that
finds the next move via a combination of alpha-beta and priority proof-number
tree searches. Finally, Libquantum simulates a quantum computer.

Compiler optimizations aim at improving performance, we first analyze the
effects of the different optimization levels (00, O1, 02, O3, Os) on the execution
time and energy consumption of our benchmark applications. Increasing the op-
timization level augments the previous set of optimizations with additional ones.
In the case of Os, the compiler uses most, but not all, of the O2 optimizations,
together with some extra optimizations that decrease the size of the executable.

Figure 1 shows the normalized energy consumption and execution time of
the different compiler optimization levels with respect to O0. As expected, the
higher the compiler effort the greater the performance and the energy gain.
DCT presents the higher speedup when using the O3 optimizations. On the
other hand, Inversek2j shows almost no speedup when compiled with increasing
optimization levels. This is because it extensively uses trigonometric functions
that are included in an already optimized version of the standard C library.
According to our measurements, the different optimization levels do not impact
CPU power consumption in a significant way, except of the case of Os level,
which in some applications (blackscholes, DCT, inversek2j) increases the power

4 Parasyris K. et al.

100%
80%

60%

40%
l || hinl “ “ ‘ huni “ " I”
I | ni

01 02 03 Os O1 02 O3 Os 01 02 O3 Os O1 02 O3 Os O1 02 O3 Os 01 02 03 Os O1 02 O3 Os O1 02 O3 Os
blckschls det fldnmt invk2j Ibgntm sjeng sobel swptns

m Normalized Time ® Normalized Energy

Fig. 1. Execution time and energy consumption of the application benchmarks for the
different compiler optimization levels, relative to OO.

1440
1420
~
=
= 1400

Al ||
[eNoNoNoNeloNoNoNoNoNoNoNoNoNeoloNoNoNoNolNoNoNoNoNoMNoNoNoNoNoloNoNoNoNoMoNoNoNo)
OFRP NWLOF NWLOFRPNWLORFRFPNWLORFRFPNWLORPNWLORPRNWORENW

1300

blckschls dct fldnmt invk2j Ibgntm sjeng sobel swptns
EP|1 mP|2

Fig. 2. Maximum frequency at which the application benchmarks run correctly for
each compiler optimization level, on two of the raspberry Pls.

consumption. This is due to the instruction selection performed on this opti-
mization level as well as that alignment and function inlining is not performed.
In any case typically, the larger energy gains that are achieved when using higher
optimization levels are mainly due to the reduced execution times.

Figure 2 illustrates the experimentally identified f,q, for the different op-
timizations levels, on two of the raspberry Pls; the results for the other two
PIs are similar, and are not shown here for brevity. The exploitable extra fre-
quency ranges from 9% to 19% of the nominal CPU frequency (1200M Hz). The
highest frequency at which all applications can be executed reliably, is equal to
1309, 1356, 1346, 1356 M hz for the four raspberry Pls, corresponding to a CPU
part-specific static frequency margin of 109, 156, 146, 156 M hz, respectively. The
workload-specific dynamic frequency margin for the four raspberry Pls is equal
to 75,69,69,69M hz respectively

Different optimization levels impact the dynamic frequency margin and can
increase or decrease fy,q. by up to 32Mhz for a given application. Interestingly,
00 has a wider margin than higher optimization levels for the same application,
in 62.5% of the configurations (combinations of different CPU parts and different
applications). Despite the increased f,q. of OO0, the decrease in the execution
time due to the extra frequency margin is relatively small, resulting in lower
energy gains compared to higher optimization levels. Thus, using higher opti-

Exploring the Effects of Code Optimizations on CPU Frequency Margins 5

160%

S 1440
£ 140%
3 <1420
120% <
i = 1400
< 100% 2
= c 1380
S 80% g
S g1360
< 60% g
s L 1340
Z 0% 3
] = 1320
1300
E o% = u_ T % L 3T S 2L B 2 L B 2 2
5 2 2 2 2
z L1 MissL2 Miss L1 Per L2Per CPl Time Energy 5 E F 5 g F 5 g F 5 EF
Inst st S 6 S S
ETrnsp mTile PI1 P12 PI3 P14
(a) (b)

Fig. 3. (a) Performance metrics and energy concumption of the transposed and tiled
MM versions, with respect to the original implementation. (b) Maximum frequency for
all raspberry Pls and all MM implementations.

mization levels is more beneficial not only in terms of performance but also in
terms of energy gains, even though these have smaller frequency margins than
00. When comparing the remaining optimization levels (01,02,03,0s) there
is no dominant optimization level in terms of frequency margins. On the other
hand, in 80% of the total cases O3 is the most energy efficient optimization level.

4 Source Code Transformations

Developers very often try to reduce the execution time of their applications by
employing more efficient algorithms, optimizing memory accesses, reducing the
number of instructions, or using special instructions for parallel processing and
vectorization. In this study, we optimize a Matrix Multiplication (MM) kernel
by using more efficient memory access patterns as well as Single Instructions
Multiple Data (SIMD) instructions. In both cases we observe the effects of the
optimizations on the energy efficiency, the execution time and the frequency
margins of the different benchmark versions.

4.1 Memory Access Pattern Optimizations

The matrix multiplication (MM) kernel performs multiplication between two
floating point matrices (C' = A x B). We consider three different implementa-
tions/versions. The so-called original version accesses the first matrix (A) in a
row-wise fashion and the second matrix (B) in a column wise fashion. The sec-
ond implementation, performs a multiplication with the transposed BT matrix,
which is allocated on a new 2D-array. Finally, the third version uses a tiled ver-
sion of the matrix multiplication. The size of the tile is equal to the cache line
size (64 bytes).

Figure 3a presents the performance metrics and energy consumption of the
transposed and tiled MM versions, normalized to the original implementation.
As expected, both optimized versions have significantly lower L1-cache misses.

6 Parasyris K. et al.

_ 400%

.

(%] 0, N

g 300% < 1400

3 250% > 1380

g 200% 2 1360

5

< 150% :.)—1340

ol 5 3500

5 x

e TR

% O% NV PR OV V22V EPAE O 1260
o oo 2 o oo 2 |27 BTOTOTOTOTOTOTOTOTOTOLOTO TO

£ SLEECESSSEE0ESELEE0ES ESEsESESEsEsEsESEsE=E=E=

5 paley Juge e CHENENENENENCNSCNSHDSNDESDHED

z 4N gs Gon@s Gon@o & 292929292929 392939393923
49 49 39 Blck Sobel MM BlckSobel MM Bick Sobel MM Bick Sobel MM
Blck Sobel MM PI1 PI2 PI3 P4

(a) (b)

Fig.4. (a) Normalized performance metrics and energy consumption of the three
benchmarks, with respect to the implementations without SIMD instructions. (b) Max-
imum frequency for all raspberry Pls and benchmarks.

They also demonstrate a significantly decreased CPI, which directly translates
to performance and energy gains.

Figure 3b presents the maximum frequency of the different MM versions. In
contrast to the compiler optimization analysis, where the non-optimized versions
exhibit larger frequency margins, the memory access optimizations present mixed
results. On the one hand, in all raspberry Pls, the largest margins are found for
the tiled MM version, which in one of the raspberry PIs (PI1) yields an increase
on the maximum frequency of up to 50Mhz compared to the original version.
On the other hand, in three out of four Pls, the transposed MM version has
lower frequency margins than the original. Also, the extra frequency margins
result on average to an additional performance gain of 2.5%. We also observe
margin variations across different parts, this difference can reach up to 63Mhz
when comparing the original version of PI1 with the same version on PI2.

4.2 SIMD Optimizations

We use SIMD instructions to optimize the execution time and energy efficiency
of Blackscholes, Sobel and tiled MM. Figure 4a presents the performance met-
rics and energy consumption, relative to the normal versions of the benchmarks
without SIMD instructions. Figure 4b shows the frequency margins of the bench-
marks for the four raspberry Pls.

As can be seen, when using SIMD instructions the execution time of Sobel
and MM is decreased to 36% and 46% of the normal versions, respectively.
This speedup is mirrored to energy gains since the power consumption does
not increase significantly when using SIMD instructions. Blackscholes does not
show any reduced execution time because many math functions used by that
benchmark do not have a SIMD equivalent function. In PI1 the SIMD version
of the blackscholes benchmark greatly increase the frequency margin by 44Mhz.
This increase in frequency provides an extra performance gain of 3.5% on top of
the performance gain obtained by the SIMD instructions. In general, the use of
SIMD instructions actually increases the maximum frequency by 1% on average.

Exploring the Effects of Code Optimizations on CPU Frequency Margins 7

5 Related Work

In [1] the authors explore the effects of compiler optimization on the vulnerabil-
ity of HPC parallel applications in the presence of radiation-induced soft errors
which effect the Static Random Access Memory. Their work focus on what hap-
pens when errors occur, in our case we identify the maximum frequency in which
timing errors do not occur for different optimization.

Many research approaches have emerged in the last few years that relax
conservative guardbands to improve energy efficiency. Prior work focusing on
commercially available chips include [9,2,3,10,7,13]. In particular in [9] the
authors present an automated system-level analysis on multi-core CPUs based
on the ARMv8 64-bit architecture when pushed to operate in scaled voltage
conditions. Due to the manifestation of SDCs before system crashes, the authors
propose a severity function that can predict safe, SDC-free undervolt levels for
each core of the processor. Based on this function and the corresponding core
Vimin resulted from the offline characterization, they produce a linear regression
model that tries to predict the safe V,,;, of a core for any workload. The same
authors present a study for two commercial x86-64 microprocessors [10]. The
heuristics presented in [2] and [3] that dynamically reduce voltage margins while
always preserving safe operation, are based on the error correction ECC hardware
built on modern processors such as the server-class Intel Itanium 9560. The rate
of ECC correctable errors is used as an indicator on how to adjust the Vg,
voltage. Authors in [13] exploit the large margins available when only one core
in a server-class 8-core Power7+ processor is utilized, turning under-utilized
margin into power and performance benefits. A study of the voltage margins on
several Kepler and Fermi GPUs is presented in [7]. They show that high energy
efficiency can be achieved by shaving conservative guardbands in modern GPUs.
In our work we focus on the frequency margins in contrast to these works which
focus on the voltage margins. To the best of our knowledge we are the first that
study the effect of optimizations to the margins of the system.

6 Conclusions

The impact of compiler optimizations on applications performance have been
widely studied in the past. However, as we approach the exascale era, it can be
worthwhile to understand the new trade-offs between application energy con-
sumption and safety margins. Our study on four raspberry Pls equipped with
an ARM Cortex A53 processor reveal wide frequency margins, up to 18% of the
nominal operating frequency, as well as considerable margins variations across
different CPU parts. Interestingly, typically non-optimized compiler code demon-
strates wider margins than the optimized one. Moreover, memory optimizations
which greatly increase the performance of an application also increase the width
of the frequency margins. Finally, using SIMD instructions usually increases the
frequency margins by a factor of 1%.

Parasyris K. et al.

References

10.

11.

12.

13.

. Ashraf, R.A., Gioiosa, R., Kestor, G., DeMara, R.F.: Exploring the Effect of Com-

piler Optimizations on the Reliability of HPC Applications. In: In Processing
on the International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). pp. 12741283 (2017)

Bacha, A., Teodorescu, R.: Using ECC Feedback to Guide Voltage Speculation
in Low-Voltage Processors. In: In Proceedings of 47th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). pp. 306-318 (Dec 2014).
https://doi.org/10.1109/MICRO.2014.54

Bacha, A., Teodorescu, R.: Dynamic Reduction of Voltage Margins by Lever-
aging On-chip ECC in Itanium II Processors. SIGARCH Comput. Archit.
News 41(3), 297-307 (Jun 2013). https://doi.org/10.1145/2508148.2485948,
http://doi.acm.org/10.1145/2508148.2485948

Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., et al.: Exascale
computing study: Technology challenges in achieving exascale systems. Tech. rep.,
DARPA IPT. (2008)

Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC Benchmark Suite: Charac-
terization and Architectural Implications. In: Proceedings of the 17th international
conference on Parallel architectures and compilation techniques (PACT). pp. 72—
81. ACM (2008)

Das, S., Roberts, D., Lee, S., Pant, S., Blaauw, D., Austin, T., Flautner, K., Mudge,
T.: A Self-Tuning DVS Processor Using Delay-Error Detection and Correction.
Solid-State Circuits, IEEE Journal of 41(4) (2006)

Leng, J., Buyuktosunoglu, A., Bertran, R., Bose, P., Reddi, V.J.: Safe
Limits on Voltage Reduction Efficiency in GPUs: A Direct Measure-
ment Approach. In: In Proceedings of the 48th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). pp. 294-307 (2015).
https://doi.org/10.1145/2830772.2830811

Measurement Computing: USB 205 Data Acquisition USB Device
Papadimitriou, G., Kaliorakis, M., Chatzidimitriou, A., Gizopoulos, D., Lawthers,
P., Das, S.: Harnessing Voltage Margins for Energy Efficiency in Multicore CPUs.
In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, (MICRO). pp. 503-516 (2017)

Papadimitriou, G., Kaliorakis, M., Chatzidimitriou, A., Magdalinos, C., Gi-
zopoulos, D.: Voltage Margins Identification on Commercial x86-64 Multi-
core Microprocessors. In: In Proceedings of the 23rd International Symposium
on On-Line Testing and Robust System Design (IOLTS). pp. 51-56 (2017).
https://doi.org/10.1109/I0LTS.2017.8046198

rsta2: Circle: A c++ bare metal programming environment for the raspberry pi,
https://github.com/rsta2/circle

Yazdanbakhsh, A., Mahajan, D., Lotfi-Kamran, P., Esmaeilzadeh, H.: AXBENCH:
A Multi-Platform Benchmark Suite for Approximate Computing. IEEE Design &
Test (2016)

Zu, Y., Lefurgy, C.R., Leng, J., Halpern, M., Floyd, M.S., Reddi, V.J.: Adap-
tive Guardband Scheduling to Improve System-Level Efficiency of the POWERT.
In: In Proceedings of the 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). pp. 308-321 (2015)

